Computational Center for Biomolecular Complexes C²BC

LEADERSHIP TEAM

<u>Dr. Wah Chiu</u>
<u>Baylor College of Medicine</u>
<u>wah@bcm.tmc.edu</u>

<u>Dr. Helen Berman</u>
<u>berman@rcsb.rutgers.edu</u>

<u>The State University of New Jersey</u>

at Rutgers

<u>Dr. Chandrajit Bajaj</u> <u>bajaj@cs.utexas.edu</u> <u>University of Texas at Austin</u>

<u>Dr. Arthur Olson</u> <u>olson@scripps.edu</u> <u>The Scripps Research Institute</u>

http://ncmi.bcm.tmc.edu/ncmi/ccbc

About C²BC

- Focused on the development of computational tools for studying functional mechanisms of biological complexes both in vitro and inside a cell
- A virtual center of interdisciplinary research across institutions

Trend in PDB Structures

Why Study Large Complexes?

- Proteins typically function in association with other proteins.
- Protein complexes are important for virtually every biological process and most diseases.
- Genome sequences identify tens of thousands of genes; linking these to 200-300 core biological processes will make their study manageable.
- Recently developed and/or improved technologies and methodologies make studies of large complexes more feasible and informative.

Example: Nuclear Pore (152 MDa)

Over 50 individual protein components

From Molecular Biology of the Cell

Approaches for Studying Complexes

Experimental Challenges

- Identification of complexes (transient vs. persistent)
- Purification of complexes
- Sample quantity/concentration
- Multiple functional states
- Validation of complexes in the living cell
- Spatial and temporal location
- Improvements of existing methodologies
- High throughput

Computational Challenges

- Large data set management
- Structures of multiple conformational states
- Interplay between structure refinement and model building
- Distributed, heterogeneous data types
- Visualization
- Annotation
- Data mining
- Structure validation in cell
- Archival of data accessible to non-experts
- Specialized algorithm and user-friendly software

Structural Biology

Physiology

Graphics

Signal Processing

Proteomics

Team For Studying Biomolecular Complexes

Software Engineering

Genomics

Cell Biology

Biochemistry

Systems Biology

Wah Helen Chiu Berman

Art Olson Chandra Bajaj High Performance
Computing

Data Integration

Statistics

Computational Mathematics

Bioengineering

Medicine

Ontology

Computational Geometry

Approach to Organize the Center

- Select appropriate biological model driving projects
- Define the computational challenges, gaps and opportunities through workshops with participants from biomedicine and computational sciences
- Personal contacts with established investigators of different specialists
- Regular meetings of leadership team via internet and visits

Workshops

Computational Center for Biomolecular Complexes C^2BC

Home

Investigators

Mission

Organization

Communication

Intranet

Workshops

Workshops at C²BC

- The Feb 2006 Computational Center for Biological Complex Planning Workshop
- The Sept 2005 Workshop on Visualization of Large Biomolecular Complexes
- The May 2005 Workshop on Structural and Computational Proteomics of Biological Complexes
- The Oct 2004 Cryo-Electron Microscopy Structure Deposition Workshop
- · cryo-EM Dictionary development site

Hosted by <u>NCMI</u> Phone: 713-798-6989 Fax: 713-798-1625

©2003, <u>Baylor College of Medicine</u> 1 Baylor Plaza,Houston,TX,77030

Privacy Notices EMail Webmaster

last modified, Mar. 09, 2005

Grant number: P20 RR020647 NIH Program Administrator: Dr. Greg Farber

Challenges to Interdisciplinary Research

- Disincentives for interdisciplinary cooperation
 - No credit for freely distributing things because it is hard to track
 - No incentive for implementation and pedestrian work
- Interdisciplinary communication
 - Finding technical information from another domain
- Finding the important problems in each discipline
- Finding the appropriate publication to receive credit
- Interdisciplinary training and education
- Lack mechanisms to support the effort to establish and maintain repositories
 - software
 - data

Basic Ground Rules

- Initially identify the brightest investigators with relevant expertise
- Participants have common intellectual interests and mutual respect (i.e. equal partners)
- Create new partnerships
- Share data and ideas; encourage "your data is ours and our data is yours"
- Develop a fair credit recognition practice
- Sufficient funding and food to glue the investigators together

Potential Participants

Imaging

W Chiu (BCM)
P Matsudaira (MIT)

Computing

P Penczek (UTH)

C Yang (LBNL)

D Scott (Rice U)

I Dhillon (UT)

S Ludtke (BCM)
W Jiang (Purdue U)

Visualization

A Olson (Scripps)

D Goodsell (Scripps)

C Bajaj (UT Austin)

T Funkhouser

(Princeton U)

J Warren (Rice U)

Data & Software Integration

M Baker (BCM)

K Henrick (EBI)

M Sanner (Scripps)

Modeling

D Baker (U Washington)

L Kavarki (Rice U)

H Wolfson (TAU)

R Nussinov (NCI)

T Ju (Washington U)

Knowledge Discovery

H Berman (Rutgers U)
C Lawson (Rutgers U)

Biological Processes: Viral infections, EC Coupling, Nuclear Transport, etc...

J King (MIT), P Chisholm (MIT), S Hamilton (BCM), I Serysheva (BCM), M Rout (Rockefeller U)

Potential Participants

Imaging
W Chiu (BCM)
P Matsudaira (MIT)

Computing

P Penczek (UTH)

C Yang (LBNL)

D Scott (Rice U)

I Dhillon (UT)

S Ludtke (BCM)

W Jiang (Purdue U)

Visualization

A Olson (Scripps)

D Goodsell (Scripps)

C Bajaj (UT Austin)

T Funkhouser (Princeton U)

J Warren (Rice U)

Data & Software Integration *M Baker (BCM)*

K Henrick (EBI)

M Sanner (Scripps)

Modeling

D Baker (U Washington)

L Kavarki (Rice U)

H Wolfson (TAU)

R Nussinov (NCI)

T Ju (Washington U)

Knowledge Discovery

H Berman (Rutgers U)

C Lawson (Rutgers U)

Biological Processes: Viral infections, EC Coupling, Nuclear Transport, etc...

J King (MIT), P Chisholm (MIT), S Hamilton (BCM), I Serysheva (BCM), M Rout (Rockefeller U)

Interactive and Interdisciplinary Pipeline for Studying Complexes

Center Outcomes

- Create new interdisciplinary scientists at interface of biomedical and computational sciences
- Provide novel integration among different data for understanding structures and functions of biological complexes and their relationships to diseases

configurate computational to biologists to make new discoveries

Integrated Quantitative Biomedicine

Computational Center for Biological Complexes

http://ncmi.bcm.tmc.edu/ncmi/ccbc

Engineering

Biological Science

Integrated Quantitative Biomedical Science

C²BC Theme and Policy

- Computational methodology innovations
- Establishing standards
- Computational methodology validation
- Cellular validation
- Adopting open source policy
- Community participation
- Enabling tools for biological end-users

Integrated Quantitative Biomedicine

Visualizing Data

Tangible Models

Augmented Reality

CryoEM and Cryomicroscopy Publications

Vision: Visual Programming

- Enable non-programmers to build computational networks
- Abstract programming syntax and data structures
- Rapid prototyping
- Encapsulation of basic tasks into shareable computational

C²BC Vision: Organization

Discovery in Biological Processes

- •How do we identify complexes (transient and stable) in a pathway?
- •How do we isolate these complexes?
- •Where in the cell are these complexes?
- •How do we determine the structure of these large complexes?
- •How do the components interact with each other?
- •Can these complexes be altered/re-repurposed?
- •How does this relate to disease?
- •How do you visualize this data?
- •Is there a common language to discuss the data?
- •How do you integrate, disseminate and archive this information?

Discovery in Biological Processes

Discovery in Biological Processes

What causes/antagonizes the system? Interactions Stimuli How do the components interact? What is the physiological response? Response Mutagenesis How do mutations effect the process? How does this effect the system? Disease/Clinical **Function Manifestation** What are the functions of the components? Where and when do these events happen? Cellular/Temporal 3D Structure Location What are the structures of the components? What is involved in the process? Re-assembly Composition Do the component structures change? What is the order of events? Temporal Pathway What is the time-scale for activity? **Activity** What is needed in the process? Substrates/ Bio-engineering Can the process/components be re-purposed? Co-factors

- Platform and programs
- Project leaders are not tenured faculty
- Grow incrementally
- Core member and assoicated member
- Support postdocts and generate new centers
- Pilot projects
- Abstracts
- Proposals
- Papers